
Stack and 
Queue

CS 251 - Data Structures and 
Algorithms



Note:
Slides complement the 

discussion in class

2



Table of Contents
Abstraction of a data structure
Abstract Data Types

Stack
Last In, First Out (LIFO)

Queue
First In, First Out (FIFO)

01

02

03

3



Abstract Data Types
01

Abstraction of a data structure

4



Abstract Data Type (ADT)

Specifies the data, operations, and error 
conditions of a data structure.

Implementation details not that important for 
an abstract data type.

The more we narrow our definition, the more 
important the implementation details matter.

Real life example: Application Programming 
Interface (API).

5



Example: Bags

Bags are data structures that store any kind 
of data.

Application programming interface (API):
● add(x:item): Inserts an item into the 

bag.
● isempty(): Checks whether the bag is 

empty or not.
● size(): Returns the number of items in 

the bag.
● (iterate): A mechanism to iterate over 

the items in the bag.

Do we care about item ordering? No.
De we care about removing an item? No.

How do we implement this data structure?

6



Stack
02

Last In, First Out (LIFO)

7



Stack: Last-In, First-Out

● push(x:item): Inserts an item at the 
top of the stack.

● pop(): Removes the item at the top 
of the stack and returns it.

● isempty(): Checks whether the 
stack is empty or not.

● size(): Returns the number of items 
in the stack.

● peek(): Returns the item at the top 
of the stack without removing it.

8



Consider the following operations: 
Push(4), Push(7), Push(1), Pop(), Push(2), Pop(), Pop(), Pop(), Push(10), Pop(), Pop()

Push(4) Push(7)

Push(1) Pop() Push(2)

Pop() Pop() Pop()

Push(10) Pop() Pop()

4 4
7

4
7
1

4
7

4
7
2

4
7

4

10
ERROR!

9



How do we 
implement 

a stack?
10



Array implementation: Let 𝑛 be the size of the stack. Consider the following operations:
Push(4), Push(7), Push(1), Pop(), Push(2), Pop(), Pop(), Pop(), Push(10), Pop(), Pop()

0 1 2 3 4

𝑆

𝑛

0 1 2 3 4

𝑆 4

𝑛

0 1 2 3 4

𝑆 4 7

𝑛

0 1 2 3 4

𝑆 4 7 1

𝑛

0 1 2 3 4

𝑆 4 7

𝑛

0 1 2 3 4

𝑆 4 7 2

𝑛

0 1 2 3 4

𝑆 4 7

𝑛

0 1 2 3 4

𝑆 4

𝑛

0 1 2 3 4

𝑆

𝑛

0 1 2 3 4

𝑆 10

𝑛

0 1 2 3 4

𝑆

𝑛

0 1 2 3 4

𝑆

𝑛

ERROR!

Push(4) Push(7)

Push(1) Pop() Push(2)

Pop() Pop() Pop()

Push(10) Pop() Pop()

11



Singly Linked List implementation: Consider the following operations:
Push(4), Push(7), Push(1), Pop(), Push(2), Pop(), Pop(), Pop(), Push(10), Pop(), Pop()

Push(4) Push(7)

Push(1) Pop() Push(2)

Pop() Pop() Pop()

Push(10) Pop() Pop()

head = null 4
head

7
head

4

1
head

7 4 7
head

4 2
head

7 4

7
head

4 4
head

first = null

10
head

head = null head = null ERROR!

12



Stack Runtime Complexities

Implementation using an array:
• Push: Insertion at the next available location. Then, Push ∈ 𝑂 1 amortized
• Pop: Remove the item at index 𝑛 − 1, where 𝑛 is the size of the stack. Then, Pop ∈ 𝜃 1
• Peek: Return the item at index 𝑛 − 1, where 𝑛 is the size of the stack. Then, Peek ∈ 𝜃 1

Implementation using a singly linked list:
• Push: Insertion at the front of the list. Then, Push ∈ 𝜃 1
• Pop: Deletion from the front of the list. Then, Pop ∈ 𝜃 1
• Peek: Return the front of the list. Then, Peek ∈ 𝜃 1



Dijkstra’s 
Expression 
Evaluation 
Algorithm

How do we evaluate (8*((7+3)-((4+2)*(3-1))))?

Input: A mathematical expression E
Output: The evaluation value of the expression

let S1 and S2 be empty stacks

for each character c in E do
if c is an operand then

push c into S1
else if c is an operator then

push c into S2
else if c is a right parenthesis then

pop an operator op from S2
pop the requisite number of operands from S1
calculate r by applying op to the operands
push r into S1

end if
end for

return the last value in S1

14Edsger W. Dijkstra may be most famous for his Shortest Path algorithm, but his contributions to math and CS go beyond such an algorithm.

https://www.cs.utexas.edu/~EWD/


Example: Eight Queen Puzzle

Place 𝑁 queens in a 𝑁 × 𝑁
chessboard so that no two queens 
threaten each other. 

Solutions exist for all natural 
numbers 𝑁 except for 𝑁 = 2 and 
𝑁 = 3.

Algorithm paradigm: Backtracking

15



Queue
03

First In, First Out (FIFO)

16



Queue: First-In, First-Out

● enqueue(x:item): Inserts an item at 
the end of the queue.

● dequeue(): Removes the item at the 
front of the queue and returns it.

● isempty(): Checks whether the 
queue is empty or not.

● size(): Returns the number of items 
in the queue.

● peek(): Returns the item at the front 
of the queue without removing it.

17



Consider the following operations: Enqueue(4), Enqueue(7), Enqueue(1), Dequeue(), Enqueue(2), Dequeue(), 
Dequeue(), Dequeue(), Queue(10), Dequeue(), Dequeue()

Enqueue(4) Enqueue(7)

Enqueue(1) Dequeue() Enqueue(2)

Dequeue() Dequeue() Dequeue()

Enqueue(10) Dequeue() Dequeue()

4 4 7

4 7 1 7 1 7 1 2

1 2 2

10
ERROR!

18



How do we 
implement 
a queue?

19



Singly Linked List implementation: Consider the following operations: Enqueue(4), Enqueue(7), Enqueue(1), 
Dequeue(), Enqueue(2), Dequeue(), Dequeue(), Dequeue(), Queue(10), Dequeue(), Dequeue()

head = tail = null 4
head = tail

2
head = tail

head = tail = null

10
head = tail

head = tail = null head = tail = null ERROR!

Enqueue(4) Enqueue(7)

Enqueue(1) Dequeue() Enqueue(2)

Dequeue() Dequeue() Dequeue()

Enqueue(10) Dequeue() Dequeue()

4
head

7
tail

4
head

7 1
tail

7
head

1
tail

7
head

1 2
tail

1
head

2
tail

20



Array implementation: Consider the following operations: Enqueue(4), Enqueue(7), Enqueue(1), Dequeue(), 
Enqueue(2), Dequeue(), Dequeue(), Dequeue(), Enqueue(10), Enqueue(5), Dequeue()

0 1 2 3 4

𝑄

ℎ = 𝑡

0 1 2 3 4

𝑄

ℎ = 𝑡

Enqueue(4) Enqueue(7)

Enqueue(1) Dequeue() Enqueue(2)

Dequeue() Dequeue() Dequeue()

Enqueue(10) Enqueue(5) Dequeue()

0 1 2 3 4

𝑄 4

ℎ 𝑡

0 1 2 3 4

𝑄 4 7

ℎ 𝑡

0 1 2 3 4

𝑄 4 7 1

ℎ 𝑡

0 1 2 3 4

𝑄 7 1

ℎ 𝑡

0 1 2 3 4

𝑄 7 1 2

ℎ 𝑡

0 1 2 3 4

𝑄 1 2

ℎ 𝑡

0 1 2 3 4

𝑄 2

ℎ 𝑡

0 1 2 3 4

𝑄 10

ℎ𝑡

0 1 2 3 4

𝑄 5 10

ℎ𝑡

0 1 2 3 4

𝑄 5

ℎ 𝑡 21



Queue Runtime Complexities

Implementation using a circular array:
• Enqueue: Insertion at index 𝑡. Then, Enqueue ∈ 𝑂 1 amortized
• Dequeue: Remove the item at index ℎ. Then, Dequeue ∈ 𝜃 1
• Peek: Return the item at index ℎ. Then, Peek ∈ 𝜃 1

Implementation using a singly linked list that tracks its tail:
• Enqueue: Insertion at the back of the list. Then, Enqueue ∈ 𝜃 1
• Dequeue: Deletion from the front of the list. Then, Dequeue ∈ 𝜃 1
• Peek: Return the front of the list. Then, Peek ∈ 𝜃 1



Queueing 
Theory

Queueing theory is the mathematical 
study of waiting lines, or queues. 

A queueing model is constructed so 
that queue lengths and waiting time
can be predicted.

Queueing theory is generally 
considered a branch of operations
research because the results are 
often used when making business 
decisions about the resources 
needed to provide a service. 

- Wikipedia

23



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

SlideOverflowException
Do you have any questions?

24

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Stack and Queue
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Abstract Data Types
	Slide 5: Abstract Data Type (ADT) 
	Slide 6: Example: Bags
	Slide 7: Stack
	Slide 8: Stack: Last-In, First-Out 
	Slide 9
	Slide 10: How do we implement a stack?
	Slide 11
	Slide 12
	Slide 13: Stack Runtime Complexities
	Slide 14: Dijkstra’s Expression Evaluation Algorithm
	Slide 15: Example: Eight Queen Puzzle 
	Slide 16: Queue
	Slide 17: Queue: First-In, First-Out 
	Slide 18
	Slide 19: How do we implement a queue?
	Slide 20
	Slide 21
	Slide 22: Queue Runtime Complexities
	Slide 23: Queueing Theory
	Slide 24: SlideOverflowException

